
Adaptive Transport Service Selection for MPI with
InfiniBand Network

Masamichi Takagi
RIKEN Advanced Institute for

Computational Science
masamichi.takagi@riken.jp

Norio Yamaguchi
RIKEN Advanced Institute for

Computational Science
norio.yamaguchi@riken.jp

Balazs Gerofi
RIKEN Advanced Institute for

Computational Science
bgerofi@riken.jp

Atsushi Hori
RIKEN Advanced Institute for

Computational Science
ahori@riken.jp

Yutaka Ishikawa
RIKEN Advanced Institute for

Computational Science
yutaka.ishikawa@riken.jp

ABSTRACT
We propose a method which adaptively selects InfiniBand
transport services used for source and destination peers to
improve performance while limiting memory consumption of
the MPI library. There are two major choices of IB trans-
port services available, i.e., Reliable Connection (RC) and
Dynamically Connected (DC), each of which is selected for
each pair of source peer and destination peer. RC is faster
than DC for all communication patterns except for the case
where there are many active RCs. It also consumes a lot of
memory when there are many processes. DC, on the other
hand, consumes less memory than RC but its performance
drops when sending messages to different destinations or
when many DCs sends a message to the same destination
DC. Therefore, the library should find the best mapping of
RCs and DCs to pairs of source peer and destination peer
according to the communication pattern of the application.
Our method finds a good mapping by comparing potential
latency benefits for candidate mappings. It achieves 13%-
19% latency reduction when compared to the methods using
only DCs in micro-benchmarks representing communication
patterns problematic to RC or DC with 64 processes.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks—High-speed ; D.2.2 [Software Engi-
neering]: Design Tools and Techniques—Software libraries

1. INTRODUCTION
Clusters, built of commodity hardware components, are

the most prevalent architecture for High Performance Com-
puting (HPC) at present. Commodity components provide
significantly better cost-performance benefits over architec-
tures targeted at smaller markets. With respect to network-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ExaMPI2015, November 15-20, 2015, Austin, TX, USA
c⃝ 2015 ACM. ISBN 978-1-4503-3998-8/15/11...$15.00

DOI: http://dx.doi.org/10.1145/2831129.2831132

ing, InfiniBand (IB) [4] has been increasingly deployed as
the de-facto interconnect solution in commodity clusters be-
cause of its high bandwidth and low latency benefit over
other network technologies. At the same time, the Message
Passing Interface (MPI) [7] is the most widely used program-
ming model in these distributed memory machines.

As systems sizes increase to exascale and beyond, scalable
message passing faces two important issues. One require-
ment is to reduce communication latency because it can
take a substantial portion of the execution time of appli-
cations. Additionally, memory consumption of the run-time
software as the function of the growing number of compute
nodes in the system must be limited not to hinder execution
of massively parallel distributed programs. We focus on de-
signing an MPI library, especially how to select IB transport
services to meet these requirements. There are two major
choices of transport services, i.e. Reliable Connection (RC)
and Dynamically Connected (DC) (DC is an extension done
by Mellanox [2]). IB provides a concept of transport entity
called Queue Pair (QP). An RC-QP is used on the source
peer and another is used on the destination peer. A DC-
QP is used in the similar manner. One RC-QP can send to
one specific RC-QP and therefore it cannot be shared with
multiple peers, whereas one DC-QP can send to any DC-
QPs and therefore one DC-QP can be shared with multiple
peers. Communication using RC-QP is faster than that of
DC-QP in all communication patterns except when there are
many active QPs, but RC-QP consumes more memory than
DC-QP because N×M RCs per process are needed in a con-
figuration with N processes times M nodes. On the other
hand, DC-QP consumes less memory than RC-QP because
only one DC-QP is needed in a configuration with N pro-
cesses times M nodes but it performs poorly when a DC-QP
sends many messages to different DC-QPs in a short period
of time or when many DC-QPs send a message to the same
DC-QP at the same time. Therefore, the MPI library should
find the best mapping of RC-QPs and DC-QPs to pairs of
source peer and destination peer, or in other words, the best
binding between RC-QPs and DC-QPs and peers, according
to the communication pattern of the application. Conven-
tional methods fail to solve the issue. For example, neither
the method proposed by Subramoni et al. [9] nor the one
proposed by Koop et al. [5] mixes RCs and DCs.

We propose an IB transport service selection method that
finds a good mapping. It compares potential latency bene-

fits of the candidate mappings and chooses the best one to
find the good mapping. The memory consumption is limited
by only including the mappings which satisfy the limit in the
candidates. The benefit is calculated against the communi-
cation statistics for a certain historical time-window. Our
method makes the time-window slide, as the time goes by, by
comparing the benefits of different mappings with different
time-windows and choosing the best one.
The remainder of this paper is organized as follows. In

Section 2, we explain the background. In Section 3, we de-
scribe our IB transport selection method. In Section 4, we
explain the evaluation results. In Section 5, we discuss re-
lated work. In Section 6, we conclude the paper.

2. BACKGROUND AND MOTIVATION
In this section we present an overview of the MPI library’s

organization and discuss the attributes of available transport
services provided by the InfiniBand network. At the same
time, we highlight the main issues to motivate our work.
The MPI library (assuming MPICH implementation) usu-

ally uses the following three layers of abstraction for com-
munication. The first layer, which we call the transport
service, controls the network hardware and provides low-
level communication primitives. The second layer, called
the software message channel, is built on top of the trans-
port service and it provides abstracted commands including
buffering and message arrival detection. The third layer,
which we call the software message protocol, is in turn built
on top of the software message channel and it provides com-
mands following the MPI API.
There are two major choices regarding transport services

in case of InfiniBand networks, which we will discuss in de-
tail below. They both have strengths and weaknesses and
the right combination of the two depends on the applica-
tion’s communication pattern. Therefore, it is important
to select the right mapping of transport services to pairs of
source peer and destination peer to hide weaknesses. The se-
lection can be performed by using communication statistics
over a time-window in application execution time, which re-
flects the communication pattern of the given interval. Addi-
tionally, because communication pattern changes over time,
another issue is that we need to decide whether or not we
should calculate and apply a new mapping using more recent
statistics that reflects the corresponding changes.
We will now explain the characteristics of IB transport ser-

vices. Subsequently, communication patterns of applications
are observed to design the selection for the right mapping
of transport services to pairs of source peer and destination
peer.

2.1 Transport Service
IB provides many transport services and we focus on Re-

liable Connection (RC) and Dynamically Connected (DC)
for the following reasons. Our method is a framework and
other transport services can be added later. And therefore
our strategy is first to evaluate the framework with small
number of representative transport services with minimum
effort. Unreliable Datagram (UD) can be represented by DC
because DC provides almost the same performance [9] and
consumes almost the same memory as UD. Extended RC
(XRC) can be represented by RC because XRC provides al-
most the same performance as RC and it reduces memory
consumption by the number of processes per node, which

can be reduced to one by using hybrid parallelization, when
compared to RC. DC is an extension proposed by Mellanox.
IB provides the concept of an event queue for packet ar-
rival detection and command completion notification, which
is called a Completion Queue (CQ). The IB terminology for
a transport service entity is a Queue Pair (QP). We explain
their performance degradation issues caused by problematic
communication patterns.

Reliable Connection (RC).
RC has two send methods. The first one is called sendrecv

where a receiver side posts a receive command which speci-
fies the address to which the arriving message is stored and
a sender side posts a send command to send a message.
The arrival of message is detected by consulting its CQ.
The second one is called RDMA where a sender side posts a
send command which specifies the remote address to which
the message is written. The arrival of message is detected
by polling on the message. RDMA is faster than sendrecv
because of the difference in the arrival detection since con-
sulting CQ incurs an additional cache-miss for a CQ entry
and adds the overhead of the IB library’s involvement when
compared to polling.

An RC-QP can send messages only to the RC-QP spec-
ified at its initialization time. In other words, one sender
RC-QP is paired with one receiver RC-QP. Therefore, RC’s
memory consumption is proportional with the number of
nodes (M) times the number of MPI processes (N) per node,
requiring N×M RC-QPs per process. Reportedly, RDMA
of RC is faster than RDMA of DC by up to approximately
ten percent [9] under various communication patterns. How-
ever, it experiences performance degradation when there are
many active RC-QPs. This is because the IB Host Channel
Adapter (HCA) has an on-board cache of QPs and cache
slashing occurs when the number of active QPs are above
the hardware threshold [5].

Dynamically Connected (DC).
A QP of Dynamically Connected (DC) can perform both

sendrecv and RDMA. A DC-QP can send packets to any
DC-QPs at the expense of connection/disconnection request
overhead. It specifies the network name of the receiver when
sending a message and sends a connection request when the
receiver is a new one and the receiver creates a temporal
communication context. Therefore, N MPI processes times
M nodes configuration requires only one DC-QP per pro-
cess if all processes use the DC-QP and hence scalability is-
sue in memory consumption is less severe than RC. On the
other hand, DC is slower than RC because of the connection
transaction overhead and two performance degradation is-
sues. Fig. 1 explains the overhead and the first performance
degradation issue [9]. All the three processes use DC-QPs
and Process 2 sends a packet to Process 1 and then Process
2 sends a packet to Process 3. Process 2 needs to send a
connection-request packet to Process 1 when trying to send
a packet to Process 1, which incurs overhead when compared
to RC-QP. Process 2 needs to disconnect from Process 1
when trying to send a packet to a new destination, in this
case Process 3, because a DC-QP remembers only one con-
nection context. And hence it sends a disconnection-request
packet to Process 1, which incurs another kind of overhead
when compared to RC-QP. Process 2 is not allowed to send
the disconnection-request packet until it receives the last ac-

Connection Request	

Connection Request	

ACK	

ACK	

ACK	

ACK	

Data
	

Data
	

Data 	
Disconnection Request	

Process 1	 Process 2	 Process 3	

ACK	

Waiting time caused by 
sender initiated 
disconnection	

Figure 1: Waiting time caused by sender initi-
ated disconnection in Dynamically Connected (DC)
Queue Pairs (QP).

Connection Request	

Connection Request	

ACK	

ACK	

ACK	

ACK	

Data
	

Data
	

Data 	
Disconnection Request	

Process 1	 Process 2	 Process 3	

ACK	

Waiting time caused by 
contention of connection 
requests	

Connection Request	

NACK	

Data 	

Figure 2: Waiting time caused by contention of con-
nection requests in Dynamically Connected (DC)
Queue Pairs (QP).

knowledge packet from Process 1. Therefore, DC slows down
when sending many messages to different DC-QPs. Fig. 2
explains the second performance degradation issue [2]. All
the three processes use DC-QPs and Process 3 sends a packet
to Process 2 and then Process 1 sends a packet to Process
2. Process 1 sends a connection-request packet to Process
2 but it contends with the connection-request packet sent
from Process 3 and Process 1 gets a NACK. Process 1 needs
to wait until Process 2 receives a disconnection request from
Process 3. The wait can be performed by back-off and retry
algorithm. Therefore, DC slows down when many DC-QPs
try to send a message to the same DC-QP at the same time.

2.2 Communication Pattern
Communication patterns of applications are observed with

the following key questions in mind.

1. Do any problematic communication patterns appear?

Figure 3: Source rank distribution over time ob-
served from rank zero in SMG2000 with 512 pro-
cesses.

Let us define the communication pattern problematic
to IB transport services. (A) One rank 1 sends many
messages to different destination ranks. (B) Many
source ranks send messages to one rank. (C) Many
destination or source ranks are involved from the view-
point of one rank.

2. What kind of mapping of IB transport services (i.e.,
RC-QP or DC-QP) to source ranks and destination
ranks would be effective for the problematic patterns?

Fig. 3 shows the source rank distribution over time ob-
served from rank zero in SMG2000[1] using 10 processes ×
63 nodes. The entire execution time is divided into one
hundred periods and the source ranks are grouped into one
hundred groups. Message receive events are counted in each
period and source rank group. The X-axis shows the peri-
ods, the Y-axis shows the source rank group. The darkness
of the dots indicates receive counts, which is calculated by
a normalized logarithm of the counts.

Narrow horizontal line in the figure implies that a small
number of source ranks are involved and a large number of
messages are received and therefore it is not a problematic
communication pattern. It is beneficial to use RC-QPs for
those source ranks because combination of RC and RDMA
is the fastest and the benefit of latency reduction outweighs
the overhead of preparing RC-QP and RDMA buffer since
the receive count is large. The vertical line indicates that the
application performs a communication involving many ranks
but it does not use an MPI collective function. This involves
hundreds of source ranks and therefore it is a problematic
communication pattern (A) or (B) or (C). There are three
strategies to handle the pattern. The first one is to create
the limited number of RC-QPs and DC-QPs on one rank
and make them handle source ranks and destination ranks
(make DC-QPs handle the large portion) when the pattern
(C) is happening. In this way, the number of active RC-QPs
is reduced and the performance degradation issue of RC is
avoided. The second one is to create many RC-QPs and DC-
QPs on one rank and make them handle many destinations
when the pattern (A) is happening. In this way, the number
of destinations for one DC-QP on one rank is reduced and
the performance degradation issue of DC is avoided. The
third one is to create many RC-QPs and DC-QPs on one
rank and make them handle many sources when the pattern

1peer and rank are used interchangeably.

Figure 4: Source rank distribution over time ob-
served from rank zero in DL-POLY with 630 pro-
cesses.

Figure 5: Source rank distribution over time ob-
served from rank zero in NAMD with 630 processes.

(B) is happening. In this way, incoming messages are dis-
tributed over multiple destination QPs on the rank and the
performance degradation issue of DC is avoided.
Fig. 4 shows the source rank distribution over time ob-

served from rank zero in DL-POLY [10] using 10 processes
× 63 nodes. We can see a new pattern, i.e., a short series
of vertical dots in which the 2i-th ranks are involved. This
appears to be the result of an MPI collective function. It is
not a problematic communication pattern because the num-
ber of source ranks is usually the order of logarithm of the
number of processes. It is beneficial to use RC-QPs when
the message count is large. The application shows the new
pattern, that is, the diagonal dots. It might be the pattern
(A) or (B) or (C) if many source ranks are involved. One
of the three strategies mentioned previously can be used.
Selecting RC-QPs would be beneficial when the number of
source ranks is small and the overhead of preparing RC-QPs
and RDMA buffer is smaller than the benefit which is de-
termined by the message counts.
Fig. 5 shows the source rank distribution over time ob-

served from rank zero in NAMD [8] using 10 processes ×
63 nodes. We can see more clear case of the 2i-th ranks
pattern. We can see the new pattern, multiple horizontal
dotted lines. It might be the pattern (A) or (B) or (C) if
many source ranks are involved and thus one of the three
strategies mentioned previously can be used.

3. DESIGN
The mechanism which selects a proper mapping of IB

transport services consists of the following four components.
(1) Software message channels which uses the transport ser-

Table 1: IB transport service and send method used
for different MPI protocols with different types of
software message channel

So#ware	
message	
channel	

Eager	
Protocol	 Rendezvous	 Protocol	

DC-‐sendrecv	 DC,	 sendrecv	
Control	 Message	 DC,	 sendrecv	

Data	 transfer	 DC,	 RDMA	

DC-‐RDMA	 DC,	 RDMA	 DC,	 RDMA	

RC-‐RDMA	 RC,	 RDMA	 RC,	 RDMA	

vices to provide abstracted messaging mechanisms. (2) Find-
ing the best mapping of software message channels given a
historical time-window. (3) Establishing software message
channels to instantiate the mapping. (4) Evaluating dif-
ferent mappings using different time-windows to adapt the
change in communication pattern.

3.1 Software Message Channels
We construct the following three software message chan-

nels for the MPI library on top of IB transport services.

DC-sendrecv.
A DC-sendrecv channel uses a pool of DC-QPs and per-

forms communication using sendrecv. Multiple DC-QPs are
used to alleviate the connection transaction overhead when
sending to different ranks in a contiguous manner [9]. ((i+j)
mod n)-th DC-QP is selected for the source rank of j and
the destination rank of i (n denotes the number of DC-QPs).
DC-sendrecv is slower than DC-RDMA and RC-RDMA.

DC-RDMA.
A DC-RDMA channel uses a pool of DC-QPs and per-

forms communication using RDMA. Multiple DC-QPs are
used for the same reason and in the same manner as DC-
sendrecv. A ring-buffer for eager protocol is prepared and
control messages are exchanged via a dedicated DC-sendrecv
channel and the type of software message channel is agreed
with the source rank when replacing a DC-sendrecv channel
with a DC-RDMA channel Control messages are exchanged
via the dedicated DC-sendrecv channel and the type of soft-
ware message channel is agreed with the source rank when
replacing a RC-RDMA channel with a DC-RDMA channel.
DC-RDMA has shorter latency for sending message than
DC-sendrecv[6].

RC-RDMA.
An RC-RDMA channel uses a RC-QP and performs com-

munication using RDMA. A control message exchange sim-
ilar in the DC-RDMA case is performed when replacing
DC-sendrecv with a RC-RDMA or replacing DC-RDMA
with a RC-RDMA. It provides the shorter latency than DC-
RDMA[9].

The use-scenario of the software message channels is as
follows. An MPI process prepares one DC-sendrecv for data
transfer, one DC-sendrecv for sending credit messages, one
DC-sendrecv for making source ranks prepare DC-RDMA
or RC-RDMA channels at the startup time and all the com-
munication uses the first DC-sendrecv. And then the MPI

process calculates the best mapping of software message
channels to pairs of source rank and destination rank. And
then it prepares DC-RDMAs or RC-RDMAs and replaces
channels with the DC-RDMAs or RC-RDMAs for the source
ranks according to the mapping. Table 1 describes which IB
transport service and send method is used for a rank to per-
form different protocols, i.e., eager protocol or rendezvous
protocols, with different software message channels. Eager
protocol over DC-sendrecv channel uses DC and sendrecv
and rendezvous protocol over DC-sendrecv channel uses DC
and sendrecv for control messages and DC and RDMA for
data transfer. Both eager and rendezvous protocol over RC-
RDMA use RC and RDMA. Both eager and rendezvous pro-
tocol over DC-RDMA use DC and RDMA.

3.2 Finding the Best Mapping
Finding the best mapping is performed by solving a com-

binatorial optimization problem which fulfills the following
targets.

• Allocate distinct RC-RDMA or DC-RDMA channels
for destination ranks to alleviate the issue when there
are many destination ranks.

• Allocate distinct RC-RDMA or DC-RDMA channels
for source ranks on an MPI-process to alleviate the
issue when there are many source ranks.

• Offload source ranks to DC-RDMA channels to limit
the number of active RC-QPs to prevent the problem
of on-HCA QP-cache slashing.

• Use as many RC-RDMAs as possible to make the most
of the fastest RC-RDMA.

• Limit the number of RC-RDMA channels to limit the
memory consumption.

Fig. 6 shows the algorithm. It is also used to calculate the
latency reduction amount when using the mapping. The
latency reduction amount is calculated relative to the case
where using only DC-sendrecv. It calculates the latency
reduction amounts when giving RC-RDMA channels to m
source ranks and DC-RDMA channels to the following l−m
source ranks with different l and m values to find the best
value of l and m by the doubly nested loop. RC-RDMA
channels previously allocated are not destroyed when it is
decided that they are not needed anymore. The total num-
ber of RC-RDMA channels is limited by changing the value
of h according to the number of RC-RDMA channels cre-
ated so far. The calculation of the overheads mentioned in
the algorithm is explained in Section A.

3.3 Establishing Software Message Channels
The component establishes RC-RDMA or DC-RDMA chan-

nels by the following steps. One thread which runs in the
background of the application thread is prepared to handle
these steps.

J1 The initiator suspends its MPI send-command process-
ing for the pair of source rank and destination rank,
prepares a ring-buffer for eager protocol, send a control
message to the responder and creates RC-QP when al-
locating an RC-RDMA channel.

FIND_MAP(W, S)
Input:

W: A historical time-window
S: Communication statistics of W

which are the number of receives for source ranks.
The source ranks are sorted in the descending order of
number of receives.

Output:
Mapping of DC-RDMAs or RC-RDMAs to source ranks
and the amount of latency reduction when compared to
using DC-sendrecv

Definitions:
ni: The number of receives from the i-th source rank
d (r): Amount of the latency reduction for receiving messages

when replacing DC-sendrecv with DC-RDMA (RC-RDMA)
c: Overhead on the receiver side by sending one credit message
s: Number of entries of each ring-buffer
δ (ρ): Overhead for control message exchange to establish

a DC-RDMA (RC-RDMA) channel
p: Latency for one polling on one ring-buffer entry which fails

to detect a message arrival
h: Number of RC-QPs available
τ : Max number of RC-RDMA or DC-RDMA channels

/* Calculate the latency reductions when giving RC-RDMA
or DC-RDMA channels to l source ranks */

for l in {0, 1, 2, ..., τ} do
/* Calculate the latency reductions when giving RC-RDMA

channels to m source ranks and DC-RDMA channels to
the following l−m source ranks */

for m in {0, 1, 2, ..., h} do
/* Latency reduction by replacing DC-sendrecv

channels with RC-RDMA or DC-RDMA channels */

xl,m =
∑m

i=1 nir +
∑l

i=m+1 nid
/* Overhead of sending credit messages */

xl,m = xl,m −
∑l

i=1 ni
c
s

/* Overhead of performing polling */

xl,m = xl,m − (maxi ni)
l
2
p

/* Overhead of control message exchanges to establish
RC-RDMA or DC-RDMA channels */

xl,m = xl,m − (mρ+ (l −m)δ)
end for

end for
Pick up the l and m value which give the maximum xl,m

and return the corresponding mapping of RC-RDMA and DC-RDMA
channels to the source ranks.

Figure 6: Algorithm to find the best mapping of
software message channels and calculates its latency

J2 The responder records the remote address of the ring-
buffer and jumps to the step J4 when allocating a DC-
RDMA channel. Otherwise, the responder creates RC-
QP and responds to the initiator.

J3 The initiator makes the RC-QP transition to ready-to-
send state and responds to the responder.

J4 The responder makes the RC-QP transition to ready-
to-send state when allocating an RC-RDMA channel,
sends the id (memory location for DC-RDMA or RC-
RDMA, sequence number for DC-sendrecv) of the last
message sent via the old channel and resumes its send-
command processing.

J5 The initiator waits until the last message arrives to
make sure that the arrival of the first message sent
through the new channel is not detected before the
arrival of the last message sent through the old chan-

nel. And then it starts polling for the new channel and
resumes its MPI send-command processing.

3.4 Evaluating Different Mappings
This component first calculates the latency reduction amounts

for different historical time-windows by using the component
of finding the best mapping. Communication statistics for
the time-windows are gathered at run-time and given to the
component. And then it decides whether or not it is bene-
ficial to move from the current mapping to the new one. It
is assumed that the latency reduction amount calculated by
using the historical time-window well predicts the latency
reduction amount for the future time-window. And then
it instructs the component of establishing software message
channels to apply the mapping when it has decided to move
to the new mapping. One thread running in the background
of the application thread is used for the component. It is
woken up periodically and the period is in the order of one
second.
Let us call a part of execution time of an application a

time-window. Let us denote by u the unit time and t the
current time. Let us denote by [b, e) a time-window begins
at b and ends at e. The component uses the following steps.

T1 Find the best channel mapping for the first time-window
[0, u) and calculate the latency reduction amount by
using the component of finding the best mapping, when
one unit of time elapsed (let us denote by scur the
mapping). Set the time-window as the current time-
window (Let us denote by β and ϵ the start time and
the end time of the current time-window, respectively).
Record the latency reduction amount for the channel
mapping (call it bcur,cur). Instruct the component of es-
tablishing message channels to apply the channel map-
ping.

T2 Find the best channel mapping for the extended time-
window [β, t) (let us denote by wext the time-window
and let us denote by sext the mapping) and record the
latency reduction amount (let us denote it by bext,ext).
Evaluate the latency reduction when scur is applied to
[β, t) and record it (let us denote it by bcur,ext). Note
that the latency reduction amount does not include
the overhead of establishing new channels because we
don’t need to perform them.

T3 Find the best channel mapping for the shrunk time-
window [t − ϵ−β

2
, t) and record the latency reduction

amount (let us denote by wshr the time-window and
by bshr,shr the latency reduction amount). Calculate
the latency reduction when scur is applied to wshr and
record it (let us denote by bcur,shr the latency reduc-
tion amount). Note that the latency reduction does
not include the overhead of establishing new channels
because we don’t need to perform them.

T4 Let (bext,ext − bcur,ext) divided by the number of mes-
sages received in the time-window be gext and (bshr,shr−
bcur,shr) divided by the number of messages received in
the time-window be gshr. Select the channel mapping
with largest g as a new channel mapping if g > γ (γ is
a parameter).

There is an additional issue for this component, i.e., creat-
ing and destroying RC-QP takes thousands of microseconds

R
e
c
e
iv

e
 c

o
u
n
t	

Source rank	

Rank0	

DC-QP2	

Rank1	 Rank4	Rank2	 Rank3	

DC-QP1	

Parameter	

Max	 number	 of	 ac.ve	 RC-‐QPs	 2	

Rank0	

RC-QP1	 RC-QP2	

Rank1	 Rank4	Rank2	 Rank3	

Buffer	

DC-QP1	DC-QP2	 DC-QP1	DC-QP2	 DC-QP1	DC-QP2	 DC-QP1	DC-QP2	

DC-QP1	DC-QP2	
DC-QP1	DC-QP2	 DC-QP1	 DC-QP2	 DC-QP1	 DC-QP2	

DC-QP2	DC-QP1	

RC-QP1	 RC-QP1	

Figure 7: Example of the selection of software mes-
sage channels.

while the latency reduction of one message send is in the
order of 0.1 microsecond. We prepare a pool of π RC-QPs
to deal with it (π is a parameter). The component keeps the
created RC-QP instead of destroying it when it is decided
that an RC-RDMA is assigned to a source rank and then
the RC-RDMA channel is no longer needed to the source
rank. A RC-QP is reused without the creation/destruction
cost when it is decided that an RC-RDMA is assigned to the
same source rank again. ρ is set to the smaller value than
the measured overhead to reflect the expected reuse counts.

Fig. 7 illustrates the steps. All ranks start with a DC-
sendrecv channels with two DC-QPs. And then rank zero
tries to find the best mapping, i.e., software message chan-
nel type for Rank one, Rank two, Rank three and Rank four
using the statistics. It calculates latency reduction amount
for possible mappings and compare the amounts and find the
best. In this example, RC-RDMA for Rank one, RC-RDMA
for Rank two, DC-RDMA for Rank three, DC-RDMA for
Rank four is the best mapping. This is because the maxi-
mum number of RC-QPs is two and Rank one and two has
the largest receive counts and therefore the latency reduction
amount is maximized when allocating fastest RC-RDMAs
to them and offloading the receive handling for Rank three
and four to the DC-RDMA. Then the rank prepares two RC-
QPs and buffers for them and instructs Rank one and Rank
two to prepare RC-QPs and then the rank prepares buffers
for the two DC-RDMA channels. Note that the mechanism
changes the software message channel for receiving but does
not change the channel for sending, e.g., it is not decided
that Rank zero will use RC-RDMA when sending a message
to Rank one.

4. EVALUATION
We compare the memory consumption of the MPI library

with our method, called Adaptive Queue Pair Selection (AQPS),
against that with existing methods and then compare the

execution times of microbenchmarks using AQPS against
existing methods.

4.1 Methodology
The following three channel selection methods including

AQPS are implemented. The first two are considered as the
existing methods.

DC-RDMA-OD.
This method starts from a DC-sendrecv channel with 28

DC-QPs for sending messages. It uses another DC-sendrecv
channel with two DC-QPs for credit messages. It uses yet
another DC-sendrecv channel with two DC-QPs for estab-
lishing DC-RDMA channel. A process sends a control mes-
sage to a destination peer via the channel to request a DC-
RDMA channel and ring-buffer of 16 entries when it sends
the first message to the peer. It uses a DC-RDMA channel
for the destination peer after that.

RC-RDMA-OD.
This method starts from a DC-sendrecv channel with four

DC-QPs for sending messages. It uses another DC-sendrecv
channel with two DC-QPs for credit messages. It uses yet
another DC-sendrecv channel with two DC-QPs for estab-
lishing RC-RDMA channel. A process sends a control mes-
sage to a destination peer via the channel to request an
RC-RDMA channel and a ring-buffer of 16 entries when it
sends the first message to the peer. It uses a RC-RDMA
channel for the destination peer after that. It creates up to
as many RC-QPs as the number of source peers.

AQPS.
This method starts from a DC-sendrecv channel with four

DC-QPs for sending messages. It uses another DC-sendrecv
channel with two DC-QPs for credit messages. It uses yet
another DC-sendrecv channel with two DC-QPs for estab-
lishing RC-RDMA or DC-RDMA channel. DC-RDMA chan-
nels with a ring-buffer of 16 entries or RC-RDMA channels
with a ring-buffer of the same size are selected to source
ranks according to the communication statistics. The pa-
rameters for the selection are shown in Table 2. These values
are obtained through measurement or estimation. The se-
lection decision is performed around every one second. This
value is chosen to make AQPS perform the first selection
fast enough and detect the following changes in communica-
tion pattern frequently enough while keeping the selection
overhead low by observing communication traces of applica-
tions.
We implemented these methods by modifying the network

device module of MPICH-3.1 [3]. That is, the proposed
methods are implemented as a part of a communication li-
brary we have been developing, called Low-Level Communi-
cation library (LLC), and then the network device module
which uses LLC as a library is developed and then the mod-
ule is plugged into MPICH. LLC is compiled with Intel C
Compiler version 15.0.3 20150407 with the option of -O2.
MPICH is compiled with Intel C Compiler version 15.0.3
20150407 with the configure option of -enable-fast=O2,
nochkmsg, notiming, ndebug -enable-nemesis-dbg-nolocal.
The last option makes processes residing in the same node
use IB, not shared memory. We used a cluster computer
with the specifications listed in Table 3. The configuration
of one MPI process per node is used because we assume that

Table 3: Parameters for evaluation environment

Component Parameters

Node Intel Xeon E5-2680 v2, 2.801 GHz,
processor 10-physical core, 20-logical core, 2-socket
HCA Mellanox Connect-IB, 6.79 GB/s

I/O bus PCI Express 3.0, 16-lane, 15.75 GB/s
Number of nodes 64

Table 4: Memory consumption components of dif-
ferent methods of software channel selection. “Com-
mon” part is included in the all methods.

Channel	
selec*on	
method	

Type	 of	
so3ware	
message	
channel	

Purpose	
Mem.	
cons.	
by	 QPs	

Mem.	 cons.	
per	 one	
read	

command	

Mem.	 cons.	
by	 one	 ring-‐

buffer	

(Common)	
DC-‐sendrecv	 Credit	

message	 296KB	 256B	 -‐	

DC-‐sendrecv	 Establishing	
channels	 512KB	 256B	 -‐	

DC-‐RDMA-‐OD	 DC-‐sendrev	 /
DC-‐RDMA	

Data	
transfer	 3464KB	 4096B	 64KB	

RC-‐RDMA-‐OD	

DC-‐sendrecv	 /	
DC-‐RDMA	

Data	
transfer	 1340KB	 4096B	 -‐	

RC-‐RDMA	 Data	
transfer	 1424KB	 -‐	 64KB	

AQPS	

DC-‐sendrecv	 /	
DC-‐RDMA	

Data	
transfer	 1340KB	 4096B	 64KB	

RC-‐RDMA	 Data	
transfer	 1424KB	 -‐	 64KB	

1	 	
8	 	
64	 	

512	 	
4,096	 	

32,768	 	
262,144	 	

2,097,152	 	
16,777,216	 	

134,217,728	 	

1	 16	 256	 4096	 65536	 M
em

or
y	
Co

ns
um

p-
on

	 (K
B)
	

Number	 of	 Processes	

DC-‐RDMA-‐OD	

RC-‐RDMA-‐OD	

AQPS	

Figure 8: Memory consumption of the channel se-
lection methods (excluding buffers) with different
numbers of processes.

many applications use OpenMP plus MPI hybrid program-
ming.

4.2 Memory Consumption
Memory consumption of a method of software channel se-

lection mainly comes from its QPs and buffers. Table 4
describes the memory consumption components of the dif-
ferent methods. AQPS maintains a table of communication
statistics with 2048 entries and the size of one entry is 8 byte
times number of processes in addition to QPs and buffers.

Fig. 8 shows the memory consumption of the channel
selection methods, including QPs and the statistics table
but excluding buffers. Let us denote by n the number of
processes. The values include QP but excludes buffers used
by DC-sendrecv or RC-RDMA or DC-RDMA. The memory

Table 2: AQPS parameters used for evaluation. n denotes the number of processes.

Parameter name Description Value

d Latency difference when replacing DC-sendrecv with DC-RDMA -0.1 usec
r Latency difference when replacing DC-sendrecv with RC-RDMA -0.15 usec
p Overhead for one failed polling 0.01 usec
c Overhead for sending one credit packet 0.3 usec
γ Threshold value of per message latency reduction 0.025 usec
δ Overhead for establishing a DC-RDMA channel 10 usec
ρ Overhead for establishing an RC-RDMA channel 10 usec
h Max number of active RC-QPs 26
τ Max number of software message channels allocated at one time 256
π Size of RC-QP pool 128
σ Size of communication statistics table 2048 (n ≤ 210)

2048/((log2 n− 10) ∗ 2) (n > 210)

1	 	
8	 	
64	 	

512	 	
4,096	 	

32,768	 	
262,144	 	

2,097,152	 	
16,777,216	 	

134,217,728	 	

1	 16	 256	 4096	 65536	

M
em

or
y	
Co

ns
um

p-
on

	 (K
B)
	

Number	 of	 Processes	

DC-‐RDMA-‐OD	
RC-‐RDMA-‐OD	
AQPS	
Por9on	 of	 buffers	

Figure 9: Memory consumption of the channel selec-
tion methods (including buffers) with different num-
bers of processes.

consumption of DC-RDMA is a scalable amount and do not
increase with n because they do not add QPs. The memory
consumption of RC-RDMA is not scalable amount because it
grows with n and reaches 93 GB with 216 processes because
it adds RC-QPs. Only the statistics history table part of
the memory consumption of AQPS grows linearly with n
because it stops creating RC-QPs after creating 128 of them.
The pace can be decreased by reducing the number of the
table entries by (log2 n − 10) ∗ 2 when n is greater than
210. This optimization reduces the memory consumption
of the table to 87 MB with 216 processes and reduces the
memory consumption of AQPS 273 MB with 216 processes.
Therefore, it can be said that the memory consumption of
AQPS is scalable.
Fig. 9 shows the memory consumption of the channel

selection methods, including QPs, the statistics table and
buffers. It also shows the memory consumption of buffers
which is common to all methods. The memory consump-
tion of all the methods are not scalable when including the
buffers because a part of the memory consumption of the
buffers grows linearly with n. There are methods to reduce
the buffers, for example, limiting the number of message
channels using RDMA (i.e. RC-RDMA and DC-RDMA) by
only satisfying first N allocation requests (N is a parame-
ter).

4.3 Microbenchmarks
The effectiveness of AQPS is evaluated by using three

micro-benchmarks representing problematic communication

0	 	

1	 	

2	 	

3	 	

4	 	

5	 	

6	 	

7	 	

8	 16	 32	 64	
La
te
nc
y	
(u
s)
	

Number	 of	 Processes	

DC-‐RDMA-‐OD	
RC-‐RDMA-‐OD	
AQPS	

Figure 10: Communication latency of one send with
different number of processes in onetoall.

patterns and changing communication patterns. The first
one corresponds to the communication pattern where one
process sends to all the other processes. (call it onetoall).
The size of messages is one byte and the number of messages
sent is set to a multiple of 320000. Barriers are performed
when a process receives more than 128 messages after a se-
ries of N−1 sends to avoid too much contention (N denotes
the number of processes). The second one corresponds to
the communication pattern where N − 1 processes sends to
one process (call it alltoone). The size of messages is one
byte and the number of messages sent is set to a multiple of
48000. Barriers are performed when a process receives more
than 128 messages after a series of N − 1 sends to avoid too
much contention. These communication patterns seem ex-
treme and rare but they are found in real applications as we
see in Section 2.2. The third one repeats onetoall and all-
toone for five times (call it repeat). This program tests the
capability of AQPS to adapt the change of communication
patterns.

Fig. 10 shows the result of onetoall. The Y-axis shows
the latency per one send. AQPS achieves the latency re-
duction of 19% with 64 processes when compared to DC-
RDMA-OD. DC-RDMA-OD can alleviate the performance
degradation issue when a source rank sends messages to dif-
ferent destination ranks in a short period of time because
the latency for waiting for the acknowledge packet can be
hidden by preparing 28 DC-QPs for the different destination
ranks in the source rank and using them in a round-robin
manner. AQPS can alleviate this issue in a similar way by
using 4 DC-QPs plus 26 RC-QPs. In addition, AQPS can re-

0	 	

1	 	

2	 	

3	 	

4	 	

5	 	

6	 	

7	 	

8	 16	 32	 64	

La
te
nc
y	
(u
s)
	

Number	 of	 Processes	

DC-‐RDMA-‐OD	
RC-‐RDMA-‐OD	
AQPS	

Figure 11: Communication latency of one send with
different number of processes in alltoone.

duce both of the DC connection and disconnection overhead
by preparing only 4 DC-QPs in the source rank and let-
ting other messages handled by 26 RC-QPs. It is assumed
that AQPS achieves shorter latency than DC-RDMA-OD
because this additional effect is large since the overhead of
the DC connection and disconnection packets occupying the
network resources is large because the message size is small.
AQPS achieves the latency reduction of 24% with 64 pro-

cesses when compared to RC-RDMA-OD. RC-RDMA-OD
suffers from the performance degradation issue because there
are more than 64 active QPs with 64 processes. On the other
hand, AQPS limits the number of RC-QPs to 26 and DC-
QPs to 8 to avoid the issue. In this way, AQPS achieves
shorter latency than RC-RDMA-OD.
Fig. 11 shows the result of alltoone. The Y-axis shows

the latency per one send. AQPS achieves the latency re-
duction of 13% with 64 processes when compared to DC-
RDMA-OD. DC-RDMA-OD can alleviate the performance
degradation issue when many source ranks send a message
to the same destination rank because the contentions among
the DC connection requests from the source ranks happen
rarely since the rank can accept 28 DC connection requests
at the same time by preparing 28 DC-QPs in the destina-
tion rank. AQPS can alleviate this issue in a similar way
by using 4 DC-QPs and 26 RC-QPs. In addition, AQPS
can reduce the DC connection overhead by preparing only 4
DC-QPs in the destination rank and letting other messages
handled by 26 RC-QPs. It is assumed that AQPS achieves
shorter latency than DC-RDMA-OD because of this addi-
tional effect.
AQPS achieves the latency reduction of 13% with 64 pro-

cesses when compared to RC-RDMA-OD. RC-RDMA-OD
suffers from the performance degradation issue because there
are more than 64 active QPs with 64 processes. On the other
hand, AQPS limits the number of RC-QPs to 26 and DC-
QPs to 8 to avoid the issue. In this way, AQPS achieves
shorter latency than RC-RDMA-OD.
Fig. 12 shows the result of repeat. The Y-axis shows

the execution time normalized to that of DC-RDMA-OD.
AQPS achieves the execution time reduction of 21% when
compared to DC-RDMA-OD and of 24% when compared to
RC-RDMA-OD. This is achieved because AQPS periodically
checks the changes in communication pattern to adapt if
there is a change.
Overall, we can see that the overhead of evaluating diffrent

mappings and gathering communication statistics is out-

0	

0.2	

0.4	

0.6	

0.8	

1	

8	 16	 32	 64	

N
or
m
al
iz
ed

	 E
xe
cu
0o

n	
0m

e	

Number	 of	 Processes	

DC-‐RDMA-‐OD	 RC-‐RDMA-‐OD	 AQPS	

Figure 12: Execution time normalized to DC-
RDMA with different number of processes in repeat.

weighed by the latency benefit.

5. RELATED WORK
Hari Subramoni et al. proposed a variant of DC-RDMA

[5]. A pool of DCs are prepared and they are assigned to
pairs of source peer and destination peer in a round-robin
fashion so that the consecutive sends to different destination
peers will not use the same DC to alleviate the performance
degradation issue which is described in Section 3.1. On the
other hand, AQPS finds a good mapping of RC-QPs and
DC-QPs to pairs of source peer and destination peer using
statistics. It can offload some of the destination peers to
RC-QPs to deal with the issue when facing that kind of
situation. In addition, it tries to make the most of RC-QPs
which are faster than DC-QPs.

Matthew J Koop et al. proposed a method to select IB
transport service and its send methods dynamically [5]. RC-
RDMA, a channel using RC and sendrecv commands (call
it RC-sendrecv), a channel using UD and sendrecv (call it
UD-sendrecv) are selected according to the message size.
They allocate RC-RDMA or RC-sendrecv when the number
of messages received for a pair of source peer and destination
peer exceeds the threshold value. Weikuna Yu et al. pro-
posed a method to connect and disconnect RCs [12]. Their
method adds RC-RDMA channels on demand. Jiuxing Liu
et al. proposed a method to allocate RC-RDMA in a first-
come first-served manner [6]. First N connections are given
RC-RDMA channels (N is a parameter). Abhinav Vishnu et
al. proposed a method to allocate RC-RDMA using Least-
Recently-Used (LRU) algorithm [11]. Every time a connec-
tion is requested and there are N RC-RDMA channels the
LRU connection is torn down and a new connection is es-
tablished (N is a parameter). These four methods cannot
handle the issue of DC and RC. On the other hand, AQPS
finds a good mapping of RCs and DCs to pairs of source
peer and destination peer using statistics and it can handle
the issues.

6. CONCLUSIONS
An MPI library using InfiniBand network can choose RC-

QP pair or DC-QP pair to use for each source-destination
pair. The amount of latency improvement by using RC-QP
for DC-QP is usually positive, but it fluctuates and even be-
comes negative in some communication patterns. In addi-
tion, it is not allowed to use RC-QP for all source-destination
pairs because RC-QPs consume prohibitive amount of mem-
ory with millions of MPI processes. Therefore, the MPI

library need to select mapping of RC-QPs and DC-QPs ac-
cording to the current communication pattern. We proposed
a method to find a proper mapping by comparing potential
latency benefits for different mappings and different histor-
ical time-windows. Communication statistics for the time-
windows are gathered at run-time and used for the compar-
ison. Our method achieves 13%-19% latency reduction in
microbenchmarks when compared to the method using only
DC-QPs.
Future work includes adding software message channels

using UD and XRC to the proposed method and evaluating
it to find whether or not these channels provide additional
benefit.

7. ACKNOWLEDGMENTS
This work is partially funded by MEXT’s program for

the Development and Improvement for the Next Generation
Ultra High-Speed Computer System, under its Subsidies for
Operating the Specific Advanced Large Research Facilities.

8. REFERENCES
[1] P. N. Brown, R. D. Falgout, and J. E. Jones.

Semicoarsening Multigrid on Distributed Eemory
Machines. SIAM Journal on Scientific Computing,
21(5):1823–1834, 2000.

[2] D. Crupnicoff, M. Kagan, A. Shahar, N. Bloch, and
H. Chapman. Dynamically-Connected Transport
Service, 7 2012. US Patent 8,213,315.

[3] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
High-Performance, Portable Implementation of the
MPI, Message Passing Interface Standard. Parallel
Computing, 22(6):789–828, 1996.

[4] InfiniBand Trade Association Std. InfiniBand
TM

Architecture Specification, Vol. 1, Rel. 1.2.1, 2007.

[5] M. J. Koop, T. Jones, and D. K. Panda.
MVAPICH-Aptus: Scalable high-performance
multi-transport MPI over InfiniBand. In Proc. of
IPDPS, pages 1–12, 4 2008.

[6] J. Liu, J. Wu, and D. K. Panda. High Performance
RDMA-Based MPI Implementation over InfiniBand.
In Proc. of ICS’03, pages 295–304, 2003.

[7] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard, 2012.
http://www.mpi-forum.org/docs/mpi-3.0/.

[8] J. C. Phillips, R. Braun, W. Wang, J. Gumbart,
E. Tajkhorshid, E. Villa, C. C. R. D. Skeel, L. Kale,
and K. Schulten. Scalable Molecular Dynamics with
NAMD. Journal of computational chemistry, 26
(16):1781–1802, 2005.

[9] H. Subramoni, K. Hamidouche, A. Venkatesh,
S. Chakraborty, , and D. K. Panda. Designing MPI
Library with Dynamic Connected Transport (DCT) of
InfiniBand: Early Experience. In Proc. of ISC, pages
278–295, 6 14.

[10] I. T. Todorov, W. Smith, K. Trachenko, and M. T.
Dove. DL POLY 3: new dimensions in molecular
dynamics simulations via massive parallelism. Journal
of Materials Chemistry, 16 (20):1911–1918, 2006.

[11] A. Vishnu, M. Krishnan, and P. Balaji. Dynamic
Time-Variant Connection Management for PGAS
Models on InfiniBand. In Proc. of CASS’11 (IPDPS
Workshops), pages 740–746, 2011.

[12] W. Yu, Q. Gao, and D. K. Panda. Adaptive
Connection Management for Scalable MPI over
InfiniBand. In Proc. of IPDPS’06, pages 32–39, 2006.

APPENDIX
A. CALCULATION OF OVERHEAD

The detail of overhead calculation mentioned in 3.3 is ex-
plained.

A.1 Overhead of performing polling
A message arrival is detected by polling on the entry of

a ring-buffer of a DC-RDMA or RC-RDMA channel. The
entry is pointed by its consumer pointer. Therefore, the
polling trials are performed on l entries. A message arrival
detection for a source rank can be delayed because the mes-
sage for the rank might arrive while performing the polling

trials for the other ring-buffers. Let i−1 be i′. i′

l
portion of

the messages for the i-th ring-buffer arrives before polling on

the ring-buffer, which delays the detection by i′

2
p. l−i′

l
por-

tion of the messages arrives after polling on the ring-buffer
and is detected in the next round of the polling series, which

delays the detection by (l−i′

2
+ i′)p. Therefore, the average

delay to one ring-buffer for one message arrival is l
2
p. The

delay from the viewpoint of a program is the total delay
to the ring-buffer with the most messages and estimated as
(maxi ni)

l
2
p.

A.2 Overhead of sending credit messages
A credit message should be exchanged at least once every

s message receives for DC-RDMA or RC-RDMA channels
and therefore the overhead is calculated as

∑l
i=1 ni

c
s
.

A.3 Overhead of establishing software message
channels

Control message exchanges to establishm RC-RDMA chan-
nels costs mρ and control message exchanges to establish
l−m DC-RDMA channels costs (l−m)δ and thus the over-
head is calculated as mρ+ (l −m)δ.

