
Interface for Heterogeneous Kernels: A Framework to Enable Hybrid OS Designs
targeting High Performance Computing on Manycore Architectures

Taku Shimosawa∗, Balazs Gerofi†, Masamichi Takagi‡, Gou Nakamura§, Tomoki Shirasawa¶, Yuji Saeki∗,
Masaaki Shimizu∗, Atsushi Hori‡ and Yutaka Ishikawa†‡

∗Hitachi, Ltd.
†Graduate School of Information Science and Technology, The University of Tokyo

‡RIKEN Advanced Institute for Computational Science
§Hitachi Solutions, Ltd.

¶Hitachi Solutions East Japan, Ltd.

Abstract—Turning towards exascale systems and beyond, it
has been widely argued that the currently available systems
software is not going to be feasible due to various requirements
such as the ability to deal with heterogeneous architectures,
the need for systems level optimization targeting specific
applications, elimination of OS noise, and at the same time,
compatibility with legacy applications. To cope with these
issues, a hybrid design of operating systems where light-weight
specialized kernels can cooperate with a traditional OS kernel
seems adequate, and a number of recent research projects are
now heading into this direction.

This paper presents Interface for Heterogeneous Kernels
(IHK), a general framework enabling hybrid kernel designs
in systems equipped with manycore processors and/or acceler-
ators. IHK provides a range of capabilities, such as resource
partitioning, management of heterogeneous OS kernels, as well
as a low-level communication layer among the kernels. We
describe IHK’s interface and demonstrate its feasibility for
hybrid kernel designs through executing various different light-
weight OS kernels on top of it, which are specialized for certain
types of applications. We use the Intel Xeon Phi, Intel’s latest
manycore coprocessor, as our experimental platform.

Keywords-OS kernel; heterogeneous kernels; manycore pro-
cessors, OS abstraction; inter-kernel communication

I. INTRODUCTION

As the rate of CPU clock improvement has stalled for
the last decade primarily due to energy consumption is-
sues, increased use of parallelism in the form of multi-
and many-core processors have been chased to improve
overall performance. Manycore processors, which come with
a large number of CPU cores providing relatively lower
clock rates or limited functionality, but significantly higher
power efficiency are already widespread in high performance
computing. A typical example of such processors is the Xeon
Phi [2], Intel’s latest design targeting parallel workloads.
The Xeon Phi provides over 60 of low-frequency x86 cores
which are all capable of running operating system (OS) code.
Two systems in the top ten supercomputers as of November
2013 [3] are already based on the Xeon Phi. The current

0This work is based on the Ph.D dissertation[1] of the first author.

Xeon Phi comes in the form of a PCI Express attached
coprocessor and requires a host machine, but the next gener-
ation Xeon Phi chip will be available in a standalone format
as per Intel’s latest announcement [4]. Moreover, projections
for future exascale configurations suggest various types of
manycore architectures, foreseeing hardware features such
as CPU cores with different frequencies and/or different
core architectures, CPU cores with multiple domains of
memory coherency, and cores with multiple memory chips
on independent buses.

Traditional operating systems, such as Linux, have proved
to have mainly four issues when they are to be used for
high performance computing in manycore systems. First of
all, OS services can affect the performance of applications
through cache pollution and the introduced fluctuation in
scheduling. This effect is called “OS jitter” or “OS noise”
[5], and known to be a major contributor of performance
degradation especially in large scale parallel systems. Sec-
ond, a single operating system kernel running on all CPU
cores in a heterogeneous system can result in degraded
performance on the low performance cores. In this scenario,
the operating system needs the ability to forward OS requests
from the low performance cores to be handled by the
kernel running on a high performance core. Third, traditional
operating systems assume cache-coherent shared memory
across all CPU cores to store their code and data. In a
system with multiple coherency domains, this may either
come with large overhead or may not work properly due
to the fact that data must be transferred explicitly between
coherence domains. Fourth, as traditional operating systems
are made to be generic in the sense that they are designed
to perform moderately well for a vast types of computers, it
is very likely that difficulties will arise when functionalities
targeting certain types of HPC applications and/or certain
types of hardware are introduced. The number of lines in the
Linux source code is over 16 million at the time of writing
this paper, and it already requires a tremendous effort to
apply fundamental changes, such as replacing parts of the
virtual memory subsystem.

The development of specialized new runtimes and OS
kernels is motivated not only by the above mentioned
issues, but also by the demand for tighter orchestration
of components across the entire software stack (i.e., appli-
cation, runtime and OSes), resiliency, fault-tolerance, and
fine-grained power management [6]. In addition, the long-
established OS interfaces should be also supported so that
legacy applications can still benefit from newer hardware.

A large number of light-weight kernels for HPC appli-
cations, such as Catamount [7] and CNK [8], have been
developed and used along with full-weight kernels running
in separate nodes. Targeting exascale systems, several recent
research efforts including FusedOS [9], Argo [6] and mOS
[10] seek ways to leverage new hardware capacity by
providing and running multiple heterogeneous kernels in
a single node. Running two types of kernels at the same
time, a full-weight kernel such as Linux to provide the
established interfaces for applications, and a light-weight
kernel specialized for HPC applications, such as the kernels
described above, is a promising way to build exascale
systems.

Although there is an increasing demand for specialized
light-weight kernels, to the best of our knowledge, existing
software infrastructure still lacks a general framework for
supporting the development and the execution of hetero-
geneous light-weight OS kernels. Such framework would
not only allow to easily boot different application specific
light-weight kernels on the same machine, but it could also
enable rapid development of new OS designs by providing
the basic facilities for CPU initialization and inter-kernel
communication, which often is a significant part of the
development effort for a multikernel configuration.

In this paper, we propose Interface for Heterogeneous
Kernels (IHK), a minimalistic, but general framework that
allows management of heterogeneous OS kernels running
over separate CPU cores of a manycore CPU or accelera-
tor(s). IHK’s main responsibilities are resource partitioning,
i.e., assigning certain CPU cores and ranges of physical
memory to specific kernels; management of heterogeneous
OS kernels, such as loading kernel images and initiating
boot/shutdown; and a low-level inter-kernel communication
mechanism that enables kernels to communicate with each
other even if they reside in different cache coherency do-
mains. Nevertheless, the target of IHK is not limited to
communication among CPU cores on the same node, but
also to communication among cores across nodes.

This paper presents the design of IHK, and the implemen-
tations of three different types of light-weight kernels built
on top of it: McKernel, a Hybrid Segmentation Kernel [11]
and one for addressing hierarchical memory management
[12]. McKernel aims at providing a noiseless environment
for applications with backward compatibility by delegating
system call requests to a master Linux kernel. The latter two
kernels are examples of special purpose light-weight kernels

for satisfing particular application needs.
This paper makes the following contributions:
• Designing a general framework to partition resources,

manage, and execute multiple heterogeneous kernels in
a single node.

• Presenting a communication facility between the het-
erogeneous kernels running in a manycore processor.

• Demonstrating the generality of IHK through three
types of light-weight kernels.

The rest of this paper is structured as follows: the next
section describes our target systems, and discusses existing
hybrid operating systems for HPC applications. Require-
ments and design policies of a general framework for hybrid
OS kernels are presented in Section III. Following the policy,
the actual design of IHK is provided in Section IV. IHK
implementation details and McKernel are introduced in V. A
brief description of the two special purpose kernels running
on top of IHK, are presented in Section VI. Section VII
evaluates IHK and McKernel. Section VIII describes related
work, and Section IX concludes the paper.

II. BACKGROUND

A. Target Systems
We have several assumptions with regards to possible

differences between future many-core systems and the cur-
rently available multi-cores. First, there may be multiple
types of cores on a single die. For example, general-purpose
cores optimized for single threaded execution could be
accompanied with computation cores specialized for parallel
workloads (such as GPGPUs). Alternatively, cores with
different operating frequencies like the ARM big.LITTLE
[13] might be available. Second, manycore systems might
have multiple separated memory address spaces, where some
of the memory spaces may not be accessible directly from
a certain set of cores. Even if accessible, latency may
vary depending on which core accesses which memory area
and cache coherency may not be retained, such as in case
over PCI-Express. Third, due to the large number of cores,
parallel applications running within a single processor may
be more sensitive to jitter since the effect of jitter increases
with the number of cores. Finally, we also assume that cores
can execute privileged code (i.e., OS code) unlike in current
GPUs or other type of special purpose accelerators.

One of our current target platforms is the Intel Xeon Phi,
which comes with 61 x86 CPU cores (4-way SMT each),
providing 244 hardware threads altogether. Although these
cores are homogeneous, the co-processor currently needs to
be attached to a regular host CPU which has normally higher
clock frequency. Furthermore, the Xeon Phi has its own local
GDDR5 memory in addition to the main memory of the
host. The Xeon Phi’s local memory and the host DRAM are
accessible from both the Xeon Phi and the host CPU, but
accessing remote memory costs more due to the overhead
of the PCI Express bus.

B. Hybrid Kernels Approach

Hybrid kernels have been proposed and implemented both
in research and in production. For example, combination
of I/O nodes and compute nodes were deployed in several
supercomputer systems including IBM’s Blue Gene series
[14], where a specialized light-weight kernel (CNK) is run-
ning on the compute nodes and Linux is running on the I/O
nodes. The same approach can be taken inside a manycore
processor. FusedOS [9] was the first proposal to promote
the integration of a commodity operating system with rich
functionalities and a light-weight kernel that actually runs
the applications. Although several recent efforts, such as
mOS [10] or Argo [6], follow a similar path, none of these
studies provide a general framework for running different
types of light-weight kernels. We belive the ability to sup-
port heterogeneous light-weight kernels is highly important
because it allows rapid evaluation of new concepts in HPC
systems software, and it also enables the development of
application or programming model specific environments.

Host CPU Manycore
I/O bus

Commodity

OS

Application A

Light-weight

Kernel

Application B

(1) "attached" con�guration

Manycore

Light-weight Kernel

Application

(2) "builtin" con�guration

User

Kernel

User

Kernel
Commodity

OS

Figure 1. Two configurations of manycore systems

Interface for Heterogeneous Kernels, our proposed frame-
work, aims to provide a general framework to enable hybrid
kernel designs. IHK currently provides two types of config-
urations (Figure 1). The “attached” configuration supports
manycore coprocessors attached to a multi-core host, while
the “builtin” configuration allows partitioning resources (i.e.,
CPU cores and physical memory) of a standalone manycore
platform.

III. IHK: INTERFACE FOR HETEROGENEOUS KERNELS

A. Requirements

To accomplish the hybrid kernel approach described in
the previous section, there are three requirements for IHK:
(1) To manage multiple kernels and to provide an interface
to allocate or free resources for a kernel, and boot or stop a
kernel. (2) To partition resources in the node so that multiple
kernels can coexist in the same node. (3) To provide a
communication mechanism among the kernels in order to
achieve integration of system services.

Commodity OS

IHK-Master

Partition

Manager

IKC

Light-weight

Kernel

Light-weight

Kernel

IHK-SlaveIHK-Slave
Partitioned

Execution
Partitioned

Execution

IKC IKC

Core Core Core Core Core Core....

1 or more LWKs

Figure 2. Architectural overview of IHK components.

B. Basic Architecture

The basic architecture of IHK is depicted in Figure 2.
IHK categorizes kernels in two types: a master kernel and
slave kernels. The master kernel is a kernel that is booted
first through the normal booting process, for example, booted
from BIOS or UEFI, and is typically a commodity operating
system (such as Linux). Slave kernels are kernels that are
booted from the master kernel. IHK’s components in the
master and slave kernels are called IHK-Master and IHK-
Slave, respectively.

The features corresponding to the requirements are im-
plemented as shown in Figure 2: resource management is
implemented in IHK-Master, a feature to execute with the
partitioned resources is implemented in IHK-Slave, and the
communication facility called IHK-IKC is implemented both
in IHK-Master and IHK-Slave.

There are two design policy in IHK. One is to provide
a minimal interface to achieve hybrid kernel designs. Thus,
the general functionalities in operating systems and should
not be included in interface of IHK. One of the examples is
to map the physical memory to the virtual memory, which
is a common function in operating systems, but might not
be necessary in a certain light-weight kernel. In contrast,
IHK has a function to map the remote physical memory to
the physical memory. It is a required feature to share some
information among kernels, which is the case only when
the heterogeneous kernel approach is taken. The other is
to provide a utility library for kernels that is cumbersome
but requisite. The example is the bootstrap code. It does
not contradict the first policy because the library is opt-
in for light-weight kernels, but rather it helps the rapid
development of light-weight kernels.

IV. IHK DETAILS

IHK consists of several interfaces and common libraries.
The interface is exposed to each kernel so that the kernel can
boot another one, it can coexist or communicate with other
kernels. The common library provides an implementation for
the part of the interface which makes it easier and quicker to
develop new kernels running on top of IHK. In the following,
details of each component in IHK is described.

A. IHK-Master

IHK-Master provides the interface which is used in a
master kernel to boot another kernel in the same machine.
Booting another kernel means that a certain set of CPU

cores, a certain area of memory, and a certain set of devices,
if any, are dedicated to the slave kernel. This requires
management of resources and the ability to run multiple
kernels within a single node.

1) Objects: The types of resources which IHK man-
ages are “devices,” “cores,” and “memory.” The resources
are represented in the objects named ihk_device,
ihk_cpu_core, and ihk_memory_area, respectively.
A device is a multicore or manycore processor which has
several cores and some amount of memory. If a kernel is
booted from a host CPU in a manycore coprocessor, the
target device would be the coprocessor. If a kernel is booted
in another CPU core in the same SMP processor, the target
device would be the processor itself. CPU cores and memory
logically all belong to these devices.

The other object in IHK-Master is ihk_kernel which
represents a running kernel. As we do not assume that a
single kernel manages multiple devices, an ihk_kernel
object has an associated device. Since a kernel requires
dedicated CPU cores and memory to run, it has associated
resources.

While the status of objects, e.g., whether resources are
dedicated to some kernels or not, must be shared among
the master kernels, the way of sharing depends on the
implementation. In the current implementation, only one
kernel serves as the master kernel, thus maintaining this
information there is sufficient.

2) Functions: The master kernel boots another kernel by
the following steps: the master kernel creates device objects,
creates a new kernel object, assigns resources to the kernel,
loads the kernel image, sets parameters for the kernel and
finally boots the kernel. In the following, we describe the
detailed steps and functions used.

During boot time, the master kernel
creates ihk_device objects through the
ihk_master_create_device function based on
availability of devices in the machine. If the kernel is
capable of booting another kernel in the same CPU, it
creates an ihk_device object corresponding to the CPU.
Each device is associated to a set of functions which handle
device-specific actions such as accessing its memory or
booting.

Booting another kernel is typically initiated by a user
request, and the user interface is dependent on the master
kernel implementation. As shown later in Section V-A, our
Linux implementation uses character devices for this pur-
pose. Upon request, the ihk_master_create_kernel
function is called to create an ihk_kernel object.

Next, resources should be assigned to the kernel. There are
two types of functions to do this: “allocate” and “reserve.”
In IHK-Master, the former only specifies the amount of
resources required and lets the master kernel choose the
specific set of resources, while the latter specifies which
resource must be assigned to the kernel. Thus, for the

CPU cores, the ihk_master_allocate_cpu function
requires the number of CPU cores as the argument, while the
ihk_master_reserve_cpu function requires the set of
CPU cores specified by core IDs. As for physical memory,
the argument of the ihk_master_allocate_memory
function defines the amount of memory, and that of the
ihk_master_reserve_memory function defines the
start address and the size of the particular area.

The kernel image is loaded via the
ihk_master_load_file function or
ihk_master_load_image function. The difference
between the two functions is the source of the kernel image,
i.e., whether it is a file or the image is in memory. In the
both cases, it loads the specified kernel image to a proper
location in the assigned memory area.

Users may want to assign parameters to the new kernel,
and this is achieved by via the ihk_master_set_args
function. The argument is a simple string and the format is
user specified.

Finally, the ihk_master_boot function initiates the
slave kernel. The function kicks a CPU core allocated for
the slave kernel so that it proceeds with booting.

The kernel status, whether the kernel is in the middle of
booting, booted, in panic, or shut down, can be queried via
the ihk_master_query_kernel_status function.

To stop a kernel, the ihk_master_shutdown function
provides a way to shutdown the kernel safely.

When a slave kernel is stopped by some reason, including
the ihk_master_shutdown function, the kernel object
should be released by ihk_master_destroy_kernel.
It forcefully stops the kernel if it is still running, releases
the resources it has used, and releases the ihk_kernel
object. This terminates the lifecycle of a slave kernel.

B. IHK-Slave

IHK-Slave defines interface for slave kernels to work
with other kernels. As IHK-Master manages partitioning
resources among the slave kernels, they only use resources
dedicated to them by obtaining the resource information
through IHK-Slave. The way IHK-Slave retrieves the infor-
mation from IHK-Master is implementation-specific; typi-
cally, it retrieves by accessing a certain address in memory.

Functions defined in IHK-Slave
are: ihk_slave_get_kernel_id,
ihk_slave_get_available_cpu and
ihk_slave_get_available_memory. The first
function retrieves the identifier to distinguish the running
slave kernel. The second function returns the set of CPU
cores which are available for the slave kernel. The third
function obtains the memory areas which are available for
the kernel.

As partitioning must be assured by the slave ker-
nels, the slave kernel should retrieve the resource
partitioning information, that is, it should call the

ihk_slave_get_available_cpu/memory functions
during initialization phase of the booting. Under the assump-
tions that the master kernel works correctly, the latest time
up to when the slave kernel is required to obtain resource
information is as follows: As for CPU cores, the booted
CPU core is guaranteed to be in the available CPU set, the
function should be called before it wakes up any other CPU
core. As for memory, the kernel code and statically allocated
data (typically, the code and data located in the “text,” “data”
and “bss” sections) is guaranteed to be in the available area
of memory, the function should be called before it starts
dynamic allocation of memory.

C. IHK-IKC

!"#$"%&'& !"#$"%&(&

)"*"+,"&-."."&
)"*"+,"&-."."&

/"01#2&

345$$"%&

/"01#2&

671#"&
671#"&

31#"31#" 8$7"##.97&

Figure 3. Communication model in IHK-IKC.

IHK-Master and IHK-Slave both have interface of IHK-
IKC, message-passing peer-to-peer channel-based communi-
cation interface among multiple kernels. Figure 3 depicts the
communication model of IHK-IKC. A channel consists of a
pair of message queues where the size of a message is fixed.
The sizes of a message and a queue can be configured for
each channel. As IHK-IKC is designed for communication
among kernels, the endpoints of a channel are identified by
their kernel IDs and cores.

The core functions in IHK-IKC provides
basic manipulation of channels: initializ-
ing (ihk_ikc_create_channel), finaliz-
ing (ihk_ikc_free_channel), receiving
(ihk_ikc_recv and ihk_ikc_recv_handler),
and sending (ihk_ikc_send). The reason why there
are two receiving functions is to provide a function that
avoids additional copying from a queue in the channel. The
ihk_ikc_recv_handler function calls the specified
handler function for every message received in the queue
with the pointer to the message without copying. As it
assumes that the receive queue is located in the local
memory, its access cost would not excess. Dequeuing
the message from the queue is deferred until the handler
function returns, thus the handler function should be as light
as possible. Alternatively, the ihk_ikc_recv function
copies the message from the queue to the specified pointer.

IHK-IKC only defines the very primitive functions, and
the other functionality in communication is left to implemen-
tation of these functions. For example, notification of arrival
of a new packet to the other endpoint in the channel should
be implemented in the ihk_ikc_send function; typically

using interrupts or polling. IHK provides a library of IHK-
IKC implementation for these functions with additional
“listen and connect” port model and asynchronous message
reception feature. The detail is shown later in Section IV-E.

D. Bootstrap Library

The initialization of a new core is highly architecture-
dependent but common to every kernel running for the same
architecture. IHK provides a “bootstrap library” for certain
architecture to ease the development of an LWK. As our first
target are Xeon and Xeon Phi, the current IHK has bootstrap
implementation for the x86-64 architecture.

The bootstrap library has two components: the CPU
initialization part, and the ELF boot part. The CPU initial-
ization part initializes a CPU core. For example, it switches
a CPU core to 16-bit real mode to 64-bit mode with paging
enabled in x86-64 architecture. The ELF boot part loads an
ELF kernel into memory according to its ELF header. This
allows the light-weight kernel to employ the ELF format, a
common binary format.

E. IKC Library

IKC Library provides an easier way to establish multiple
channels in the server-client manner; the server endpoint
“listens” to a certain “port,” and the client endpoint “con-
nects” to the port listened by the server. Channels are man-
aged through a single channel called the “master” channel:
e.g., the endpoints share the address of the queues in a
channel via “master” channel packets. By passing control
messages through the master channel, the IKC Library can
establishe and destroy channels.

When the IKC Library is initialized, the master channel
is established between the master and the slave kernels. The
“master” channel uses an arbitrary core for each kernel as
its endpoint. The way to share the memory locations of
the queues between the endpoint kernels is implementation
dependent. When a kernel waits for a new connection in
some port, it calls the ihk_ikc_listen function speci-
fying the port number and a handler. When the peer kernel
connects to the port by the ihk_ikc_connect function,
IKC Library creates the channel and calls the handler with
the information for the channel. In order to provide an
asynchronous reception feature, channel are also associated
with packet handlerswhich is set in ihk_ikc_connect or
the listen handler. The packet handlers are called when a new
packet arrives in the channel. The ihk_ikc_disconnect
function disconnects the specified channel.

V. IMPLEMENTATION OF MASTER AND SLAVE KERNELS

This section describes our implementation of IHK on
Linux and a LWK. As a master kernel, Linux 2.6.38
is used and modified to support resource partitioning as
implementing IHK-Slave. In Linux, character devices are
also used for user interface for IHK-Master. As an example

Linux

Ghost Process

McKernel

Application
User

Kernel

Delegate

Module
SC Request

SC Result

System call

Result

IKC

Figure 4. Overview of the system call delegation mechanism.

LWK, the implementation of McKernel, which is aimed to
provide applications with a noiseless environment and the
functionality of Linux, is then described.

A. Linux: A master kernel

The implementation of resource partitioning in Linux
is based on the SHIMOS mechanism [15]. The SHIMOS
mechanism is implemented by modifying and adding codes
to Linux in order to limit use in Linux of CPU cores and
memory, thus it achieves partitioning. SHIMOS manages
the resource usage of kernels in a central structure which
is referred and used in booting and allocating resources in
IHK-Master.

The user interface for IHK-Master in Linux is imple-
mented as VFS operations on the special character devices.
The ioctls to the character directs IHK-Master to create,
load, and boot the new kernels. These requests are then
handled by IHK-Master, and in turn it calls the device-
specific code for each request. The device-specific code is
provided by a device driver kernel module which passes the
function pointers for the device-specific handling routines
to IHK-Master, therefore it is easily portable to the other
manycore devices.

B. McKernel: A Noiseless Kernel

McKernel is designed to run applications without OS
noises by having the minimalist kernel core and isolating
it from various daemons, consequently reducing cache con-
tentions caused by system calls and other processes. McK-
ernel is equipped with a system call delegation mechanism
to provide the same functionalities available on the master
kernel to the applications running on McKernel. The system
call delegation mechanism in McKernel is implemented on
IHK-IKC, exemplifying one practical use it. In the follow-
ing, we focus on the system call delegation mechanism in
McKernel.

1) Structures: The structure of the system call delegation
mechanism is illustrated in Figure 4. In Linux, there are
a delegate kernel module that handles the IKC channels
for system call delegation between McKernel, and “ghost
processes” that performs system calls on behalf of the
processes running in McKernel.

When a system call is issued in an application in McKer-
nel, McKernel handles the system call if it is implemented
in McKernel, and delegates it to Linux otherwise. The
criteria if the system call is implemented or not in McKernel

are whether it is performance-critical and whether it needs
change the local processor state. The former example is
“futex,” which are frequently called by multithread libraries
for synchronization between threads; the latter example is
“mmap” of anonymous pages, which requires page table
manipulation for the processor. To delegate system calls,
McKernel sends a message to Linux via a IKC channel.

One ghost process in Linux exists for one process in
McKernel. The ghost process waits for system call requests
from the corresponding process in McKernel. The delegate
kernel module wakes up the corresponding ghost process
when it receives a system call request via IKC, passing the
information for the request to the ghost process. The ghost
process executes a system call, and requests the delegate
module to send the result to McKernel, and then waits for
another system call requests.

There aries a question for system calls: how ghost pro-
cesses access the memory contents in McKernel and how
the virtual addresses in the arguments are solved because the
arguments may have pointers to the memory in McKernel
and addressed by a virtual address in McKernel.

2) Handling Pointers in Delegated System Calls: The so-
lutions for the question are (i) resolving the virtual addresses
by McKernel before it sends system call requests to Linux or
(ii) using the same virtual mapping in Linux as McKernel.

The first solution is that McKernel modifies the pointer
arguments in system calls to the physical addresses. Linux
maps the McKernel’s physical memory to its local virtual
memory, and performs the system call by rewriting again the
addresses of the physical pointer to the virtual pointer. Alter-
natively, Linux may copy the McKernel’s memory pointed
by the pointer to its own buffer by using DMA engines if the
mapping McKernel’s memory is not possible. However, in
either case, it requires the knowledge of which arguments
are pointers for all the system calls. It is sometimes very
difficult for system calls that the semantics of arguments
vary by the context, e.g. the ioctl system call.

The second solution is that a ghost process defines virtual
to physical mappings in the same way as the corresponding
real process, as illustrated in Figure 5. This unified address
space layout allows the ghost process to access the memory
area of the real process using the same virtual addresses.
The code and data specific to the ghost process is mapped
in an address range which is not used by the real process.

The benefit is that there is no need to recognize which
arguments of the system calls are addresses, and what are the
side effects of the system calls. However, the disadvantages
are that accesses to the McKernel memory from Linux are
performed in the same way as the memory local to the ghost
process, so it can result in the inefficient accesses like many
random accesses to small memory areas over I/O bus, and
that it cannot be used for accelerators that do not allow
mapping of the memory in accelerators to the host.

McKernel employs the second solution because it can

Phys. Address

in Manycore

Ghost Process

Code & Data

Virt. Address

in Linux

Real processGhost process

text, data
etc.

heap

Virt. Address

in McKernel

Figure 5. Unified virtual address space of the application and the
corresponding ghost process.

resolve the “ioctl” issues, and because the target manycore
processor, Xeon Phi, is capable of mapping Xeon Phi’s
memory to the host address space.

VI. LIGHT-WEIGHT KERNEL EXAMPLES

This section discusses various OS implementations on top
of IHK with the intention of demonstrating IHK’s ability to
provide the basic foundation for rapid prototyping of new
kernel designs.

A. Hybrid Segmentation Kernel

Our first example is a hybrid kernel design that leverages
segmentation instead of paging for providing virtual memory
targeting HPC and big data workloads [11]. Running a
very lightweight kernel that sets the application CPU cores
to segmentation mode and subsequently offloads kernel
services to dedicated cores running a regular kernel on top
of paging is the basic architecture proposed in [11].

Figure 6. Normalized average execution time of BFS search in
Graph500 using 4kB/2MB pages on MPSS Linux compared to seg-
mentation with McKernel as the function of graph scale [11].

The segmentation configuration is evaluated using the
Graph500 benchmark (Figure 6, and results show 81%
and 9% improvement compared to utilizing 4kB and 2MB
pages, respectively. IHK plays a crucial role in booting
the minimalistic kernel and providing the infrastructure
for system call offloading. Designing such a system from
scratch, including the implementation of system calls in the
segmentation kernel would have required significantly more

development, without providing any additional value from
the memory management point of view.

B. Hierarchical Memory Management

Another example of a specialized lightweight kernel has
been introduced in [12] for dealing with hierarchical memory
management in current heterogeneous architectures focusing
on Intel’s Xeon Phi manycore co-processor. In particular,
this work introduces a novel page table arrangement called
partially separated page tables (PSPT) which minimizes the
cost of remote TLB invalidations when data movement is
performed at the OS level and the address space of the
application is often modified. PSPT uses separate page tables
for each CPU core even if the corresponding threads run
in the same address space which enables the OS to keep
track of which virtual addresses are mapped by which cores.
A 2D heat diffusion stencil computation benchmark was
used to evaluate the performance of hierarchical memory
management and results are shown in Figure 7. For more
details on this study, refer to [12].

Figure 7. Stencil computation over hierarchical memory [12].

Again, with respect to IHK, it is important to point out
that the development cost of the lightweight kernel running
on the Xeon Phi was substantially lower than implementing
such a system entirely from scratch. IHK provides the basic
infrastructure for interaction between the Xeon Phi and the
host machine and it also enabled rapid prototyping of page
table level modifications which would be a major effort in
the Linux kernel.

VII. EVALUATION

In this section, we show the evaluation of the implemen-
tation of IHK in Linux and McKernel for x86 64 processor
with Xeon Phi as manycore coprocessor. The evaluation
environment is summarized in Table I. In the following
results, “attached” and “builtin” denotes the configurations
in IHK. In “attached,” McKernel is running in Xeon Phi and
Linux is running in the host machine. In “builtin,” Linux and
Mckernel are both running in Xeon Phi, and Linux is also
running in the host machine. “MPSS-Linux” denotes Intel’s
default configuration that runs one Linux kernel in Xeon
Phi, and also Linux in the host machine.

Table I
EVALUATION ENVIRONMENT

Host

CPU Intel Xeon E5-2670 v2 x 2
(2.50GHz, 10 cores, 20 threads)

Memory DDR3 1600MHz 16GB x 2
OS RedHat Enterprise Linux 6.2

Compiler Intel C/Fortran Compiler 13.0.0 20120731

Coprocessor
CPU Intel Xeon Phi 5110P

(1.053GHz, 60 cores, 240 threads)
Memory GDDR5 8GB

OS (MPSS) Intel MPSS 3.1.2

Table II
IKC AND SYSTEM CALLS LATENCY

Attached Builtin
IKC Ping-Pong 16.7 us 26.1 us
getuid 21.5 us 39.2 us

In this section, the performance of IHK-IKC, and the sys-
tem call latency implemented upon IHK-IKC in McKernel
are shown. Finally, as the goal of McKernel is to provide
a noiseless environment for applications, the application
performance and variance in McKernel is presented.

A. IHK-IKC

To evaluate the performance of IHK-IKC, we imple-
mented a simple IKC channel that just performs message
ping-pongs. The round-trip time for a message ping-pong
between Linux and McKernel was measured. To discuss the
latency, the latency for system call implemented upon IHK-
IKC in McKernel was also measured. The used system call
is the getuid system call, which just loads and returns a
value in the task structure. The results are shown in Table
II. The system call latency in the “attached” case is about
22us, which includes costs for waking up ghost processes
and system call procedures, as shown in Figure 4.

Next, the performance of I/O system calls was measured.
The measurement is conducted to the file in a tmpfs file
system. For the “attached” case, the file is located in the
host, for the “MPSS-NFS” case, the file is located in the
host mounted by NFS in Xeon Phi via a virtual network
device provided by MPSS. and for the other cases, the file
is located in Xeon Phi. The data size used was 64MB.
Table III shows the results. The system call delegation
overhead is negligible when more than one megabyte is read
because the 22us overhead occupies only 7.8% of the latency
of one megabyte read for “attached.” Moreover, from the
comparison between “MPSS-Linux” and “attached,” the I/O
performance is better when delegated to the host despite of
the delegation cost. The “MPSS-NFS” case does almost the

Table III
I/O SYSTEM CALL PERFORMANCE

Attached MPSS-NFS Builtin MPSS-Linux
Read 3543 MB/s 439 MB/s 404 MB/s 411 MB/s
Write 1131 MB/s 306 MB/s 384 MB/s 392 MB/s

Table IV
ELAPSED TIME (SECOND) OF NAS PARALLEL BENCHMARK IN (# OF

THREADS = 59)

Name McKernel MPSS-Linux
Mean +2σ Worst Mean +2σ Worst

BT.B 47.58 47.59 47.59 50.77 51.20 50.96
CG.B 49.48 49.49 49.49 52.73 54.16 53.53
EP.C 27.77 27.88 27.85 29.54 30.05 29.69
FT.B 9.48 9.48 9.48 9.51 9.94 9.81
IS.C 3.33 3.33 3.33 3.50 3.60 3.53
LU.B 55.71 55.71 55.71 58.86 59.10 58.98
MG.B 1.33 1.35 1.35 1.06 1.12 1.10
SP.B 50.28 50.33 50.32 50.80 53.50 52.29

same as “attached,” but it uses NFS over virtual network
devices, the performance was worse than “attached” This
implies that the higher integration into systems service gets
better performance for the kernel communication.

B. McKernel

The goal of McKernel is to prevent applications from
suffering from the noises in the single commodity operating
systems. Next, we ran the OpenMP version of NAS Parallel
Benchmarks[16] to evaluate the performance of applications
and the variability of performance. We ran the benchmark
in the “attached” environment and “MPSS-Linux” environ-
ment. The classes (problem size) for the benchmarks were
chosen according to their memory consumption to fit into
the memory of Xeon Phi. Because OpenMP uses a thread
to monitor the threads in addition to the worker threads,
the benchmarks were executed with a configuration of 59
calculation threads. The results of repeating each benchmark
ten times is shown in Table IV. The table shows the mean,
the 95th percentile (+2σ), and the worst of the results for
each benchmark. The result shows that the mean benchmark
performance are slightly better than Linux with an exception,
MG.B. It needs further investigation for the reason, but
it is considered to be due to insufficient optimization on
thread synchronization mechanism, such as futex system
calls. On the other hand, Linux has more variability in
performance when we compare the mean values and 95th
percentile values. This stable behavior in performance in
McKernel will have more impact when the applications are
executed over multiple nodes.

VIII. RELATED WORK

This section describes related work in the view of light-
weight kernels, inter-kernel interface.

A. Kernel Architectures

In this section, we select several research efforts related
to IHK and the hybrid kernel design.

L4Linux[17] runs Linux on top of the L4 microkernel. By
building up two types of kernels, it is aimed to be a practical
operating system with the flexibility of the microkernel.
The approach is integrating of heterogeneous kernels rather

than coexisting and cooperating, therefore required a lot
of modifications on Linux. The modification of SHIMOS-
Linux is almost limited to the code around the booting and
it does not alter the core kernel functionality.

Exokernel [18] provides a minimalistic kernel-space, leav-
ing the other kernel functionatilies implemented in user-
space as library OS (LibOS). As LibOS is a user-space
library, it can be specialized for processes which it links
to. This allows unified design of system services to appli-
cations, which is similar to the goal of the hybrid kernel
design. However, the hybrid kernel design achieved by IHK
enables changing the whole operating system service in the
privileged mode, allowing wider range of ideas in systems
software to be implemented than in the user-space; for
example, segmentation kernel.

ZeptoOS [19] tries to make Linux perform as better as
the default light-weight kernel (CNK) in IBM Blue Gene
supercomputers by eliminating the source of performance
degradation issues in Linux. The approach is the opposite
of the light-weight kernel approach, and applies the perfor-
mance improvement to the existing fat operating systems.
This approach might be effective for a single generic goal,
but to test various radical ideas in operating systems, chang-
ing the large existing operating systems would be too costly.

B. Hybrid kernels

FusedOS [9] combines FWK (full-weight kernel) and
LWK (light-weight kernel). It provides applications with
rich functionality by FWK and noiseless environment by
LWK. However, it lacks abstraction interface like IHK
that enables different types of kernels, not only Linux and
McKernel, to be used. IHK provides more general way to
accomplish hybrid operating systems environments. In addi-
tion, FusedOS uses user-level layer for LWK functionality,
delegating all the system calls to FWK, which results in
performance degradation when applications invoke much
system calls. One of the most frequently used system call
in parallel programs is “futex.” McKernel provides both
system call delegation mechanism and system call handlers.
Thanks to this design, McKernel can handle performance-
critical system calls including “futex” by itself and can avoid
performance degradation.

C. Inter-kenel interface

The interface for GPUs and accelerators are proposed
in several projects including OpenCL[20], and PTask[21].
They are aimed for parallel computation by user processes,
not for kernel extension used by operating system kernels.
IHK assumes that the manycore coprocessor can execute
operating system kernels, but for GPUs, it is not the case.
For such accelerators, the application-level interface such as
OpenCL and PTask is appropriate.

Helios[22] provides a single interface of managing het-
erogeneous systems, especially systems with programmable

devices. It offloads some of the kernel functions to the
programmable devices via the interface, and achieves higher
performance.

The idea that making system calls offloaded or concen-
trated to certain cores as adopted in FusedOS and McKernel
is already proposed in several existing researches, including
FlexSC [23] and GenerOS [24]. However, the communica-
tion used to achieve the ideas is not generalized, but just
implemented for the purpose of system call delegation. For
those operating systems, it is difficult to implement the other
features additionally that require communication between
kernels.

MCAPI[25] defines the communication API between
cores in multicore systems, especially for embedded sys-
tems. IHK includes communication API set between kernels
in manycore systems. However, IHK also defines APIs
to manage different kernels, and integrates the required
interface including these two APIs. The goal of IHK is a
general framework to accomplish hybrid kernel designs by
providing all the APIs.

IX. CONCLUSION

Commodity operating systems have various issues to over-
come so that they can be deployed on upcoming manycore
systems. Hybrid kernel designs are now considered to be
a promising approach for exascale. In this paper, we have
proposed Interface for Heterogeneous Kernels (IHK) that
provides a general framework to build such hybrid kernel
systems. Certain types of applications may benefit from a
particular idea of new kernel implementation. The frame-
work provided by IHK enables quick implementation and
evaluation of such ideas. We believe that rapid evaluation
is mandatory when system software needs to be highly
integrated with applications and/or with special features of
upcoming exascale hardware. To demonstrate IHK’s ability
for rapid prototyping, we have presented McKernel, a hybrid
segmentation kernel and a hierarchal memory management
system, all implemented on top of IHK.

In the future, we will extend IHK to I/O functionality. A
direct communication facility with other nodes in McKernel
discussed in [26] makes InfiniBand interconnect devices
directly accessible from McKernel running on the Xeon Phi.
It would be beneficial to provide a generalized I/O interface
via IHK to various OS kernels.

ACKNOWLEDGEMENT

This work is partially supported by feasibility study on
advanced and efficient latency core-based architecture for
future HPCI R&D funded by the Ministry of Education,
Culture, Sports, Science and Technology, Japan. This work
is also partially supported by a CREST project of Japan
Science and Technology Agency (JST).

REFERENCES

[1] T. Shimosawa, “Operating System Organization for Manycore
Systems,” dissertation, The University of Tokyo, 2012.

[2] Intel Corporation, “Intel R⃝Xeon PhiTMProduct Family,”
http://www.intel.com/content/www/us/en/processors/xeon/
xeon-phi-detail.html.

[3] TOP500.org, “TOP 500 Supercomputing Sites - November
2011,” http://www.top500.org/lists/2011/11.

[4] R. Hazra and B. Davis, “Technical Computing - Discover
Your Parallel Universe,” http://newsroom.intel.com/
servlet/JiveServlet/download/38-28204/SC%2713 Intel
presentation.pdf.

[5] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of
the missing supercomputer performance: Achieving optimal
performance on the 8,192 processors of asci q,” in SC ’03:
Proceedings of the 2003 ACM/IEEE conference on Supercom-
puting, 2003, p. 55.

[6] An Exsacale Operating System and Runtime Research
Project, “Argo: An exascale operating system,” http://www.
argo-osr.org/.

[7] S. M. Kelly and R. Brightwell, “Software architecture of the
light weight kernel, catamount,” in Proceedings of the 2005
Cray User Group Annual Technical Conference.

[8] J. Moreira, M. Brutman, J. Casta nos, T. Engelsiepen, M. Gi-
ampapa, T. Gooding, R. Haskin, T. Inglett, D. Lieber, P. Mc-
Carthy, M. Mundy, J. Parker, and B. Wallenfelt, “Designing
a highly-scalable operating system: the blue gene/l story,” in
SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, 2006, p. 118.

[9] Y. Park, E. Van Hensbergen, M. Hillenbrand, T. Inglett,
B. Rosenburg, K. D. Ryu, and R. Wisniewski, “Fusedos:
Fusing lwk performance with fwk functionality in a hetero-
geneous environment,” in Computer Architecture and High
Performance Computing (SBAC-PAD), 2012 IEEE 24th In-
ternational Symposium on, Oct 2012, pp. 211–218.

[10] R. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen,
“mOS: An Architecture for Extreme-Scale Operating Sys-
tems,” in International Workshop on Runtime and Operating
Systems for Supercomputers (ROSS 2014), to appear.

[11] Y. Soma, B. Gerofi, and Y. Ishikawa, “Revisiting virtual
memory for high performance computing on manycore ar-
chitectures: A hybrid segmentation kernel approach,” in In-
ternational Workshop on Runtime and Operating Systems for
Supercomputers (ROSS 2014), to appear.

[12] B. Gerofi, A. Shimada, A. Hori, and Y. Ishikawa, “Partially
separated page tables for efficient operating system assisted
hierarchical memory management on heterogeneous architec-
tures,” in Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on, May 2013, pp.
360–368.

[13] ARM Limited., “big.LITTLE Technology: The Future
of Mobile,” http://www.arm.com/files/pdf/big LITTLE
Technology the Futue of Mobile.pdf.

[14] C. Sosa and B. Knudson, IBM System Blue Gene Solu-
tion: Blue Gene/P Application Development, 2009, iSBN
0738433330.

[15] T. Shimosawa, H. Matsuba, and Y. Ishikawa, “Logical parti-
tioning without architectural supports,” in IEEE International
Computer Software and Applications Conference, 2008, pp.
355–364.

[16] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga, “The nas parallel benchmarks—
summary and preliminary results,” in Supercomputing ’91:
Proceedings of the 1991 ACM/IEEE conference on Super-
computing, 1991, pp. 158–165.

[17] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and
S. Schönberg, “The performance of µ-kernel-based systems,”
in Proceedings of the Sixteenth ACM Symposium on Operat-
ing Systems Principles, ser. SOSP ’97, 1997, pp. 66–77.

[18] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr., “Exokernel:
an operating system architecture for application-level resource
management,” in Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP ’95), Copper Mountain
Resort, Colorado, Dec. 1995, pp. 251–266.

[19] K. Yoshii, K. Iskra, H. Naik, P. Beckman, and P. C. Broekema,
“Performance and scalability evaluation of big memoryon
blue gene linux,” International Journal of High Performance
Computing Applications, vol. 25, no. 2, pp. 148–160, 2011.

[20] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel pro-
gramming standard for heterogeneous computing systems,”
Computing in Science and Engineering, vol. 12, pp. 66–73,
2010.

[21] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel, “Ptask: operating system abstractions to manage
gpus as compute devices,” in Proc. of SOSP ’11, 2011, pp.
233–248.

[22] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,
and G. Hunt, “Helios: heterogeneous multiprocessing with
satellite kernels,” in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, ser. SOSP ’09.
New York, NY, USA: ACM, 2009, pp. 221–234.

[23] L. Soares and M. Stumm, “Flexsc: flexible system call
scheduling with exception-less system calls,” in Proceedings
of the 9th USENIX conference on Operating systems design
and implementation, ser. OSDI’10, 2010, pp. 1–8.

[24] Q. Yuan, J. Zhao, M. Chen, and N. Sun, “Generos: An
asymmetric operating system kernel for multi-core systems,”
in Parallel Distributed Processing (IPDPS), 2010 IEEE In-
ternational Symposium on, 2010, pp. 1 –10.

[25] The Multicore Association, “MULTICORE COMMUNICA-
TIONS API WORKING GROUP (MCAPI(R)),” http://www.
multicore-association.org/workgroup/mcapi.php.

[26] M. Si, Y. Ishikawa, and M. Takagi, “Direct mpi library for
intel xeon phi co-processors,” in Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW),
2013 IEEE 27th International, May 2013, pp. 816–824.

